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Abstract. We present a formalism able to generalise to a relativistically covariant scheme the standard
nuclear shell model. We show that, using some generalised nuclear Green’s functions and their Lehmann
representation we can define the relativistic equivalent of the non-relativistic single-particle wave function
(not losing, however, the physical contribution of other degrees of freedom, like mesons and antinucleons).
It is shown that the mass operator associated to the nuclear Green’s function can be approximated with
the equivalent of a shell model potential and that the corresponding “single-particle wave functions” can
be easily derived in a specified frame of reference and then boosted to any other system, thus fully restoring
the Lorentz covariance.

PACS. 21.60.Cs Shell model

1 Introduction

The difficulties one meets in building a theory for a rela-
tivistic bound system with finite number of particles are
well known. Up to now, in spite of many efforts in this field
(see [1,2] for a comprehensive review, but also [3] to get an
example of the present approach to the relativistic shell
model), to reconcile relativity, translational invariance and
shell model seems to be a very hard task. Moreover, even
the connection between exclusive and inclusive processes
is non-trivial for two order of problems.

On one side in fact in a relativistic framework it is
impossible to fully disentangle the nucleonic and nuclear
dynamics [4] (in a few words the nucleon form factors do
not factorize) even in the simple scheme of the Plane Wave
Impulse Approximation (PWIA), because the separation
between longitudinal and transverse motion is a frame-
dependent concept and the Fermi motion of the nuclei
prevents their full separation in a nuclear context. More-
over, even the concept of Coulomb sum rule as it is usually
interpreted loses its meaning and can be regained only at
the prize of introducing a suitable renormalization factor
(that, fortunately, turns out to be largely model indepen-
dent) [5].

On the other side, when going beyond PWIA multiple
counting of diagrams occurs [6], with the consequence that
the integral of the differential cross-sections for (e, e′p)
or (e, e′n) reactions no longer coincide with the inclusive
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cross-section (this because of the existence of channels
where, for instance, another nucleon is emitted but not
revealed).

Thus, with the usual many-body expansion it is very
difficult to connect the forward-scattering amplitude with
the total cross-section. This suggested us to extend the
idea of Green’s functions (of any kind) by allowing situa-
tions where the kinematics of the initial and final nucleus
can be different. This will be suitable to directly study
the elastic processes in a fully Poincaré invariant way, but
natural extensions could also be obtained (and we plan to
pursue this line in the future) by choosing different initial
and final states.

For the moment we limit ourselves to the problem of
two interacting particles, namely a nucleus ± a nucleon or
(if case) an elementary particle (nucleon) ± a quark. This
job enables us to account for recoil effects in high-energy
nuclear reactions and in quark physics (excitations of nu-
cleon, meson).

We first begin in sect. 2 with a short review of what it
happens in the non-relativistic frame, in order to provide
a layout of the matter we would like to generalise, and also
in order to make easier the understanding of the origin of
some problem we are concerned with, i.e., if they arise
from the many-body theory or from the relativity.

Next, in sect. 3 we consider the one-particle (or hole)
problem in presence of a nucleus (to be more specific we
consider nuclei with A nucleons ± one nucleon). We use
a formalism similar to the one of the Green’s function
formalism. Due to nuclear recoil the equations for hole
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and particle become different unlike the infinite systems
or models where recoil is neglected.

In sect. 4 we introduce a model with particle (hole)-
nucleus interaction, conceptually similar to the shell
model. The equation of motion in such approach looks like
the equation for a particle embedded in a mean field, but
the equation is relativistically covariant (of course with
suitable choice of the interaction). The crucial point here
is that we need to introduce the “shell” ground state of
the system.

Section 5 provides a possible perturbative scheme to
go beyond the mean-field level, and sect. 6 presents a sim-
ple case where the “relativistic shell model” can be easily
solved, thus coming in contact with the real world, not
pursuing abstract and inapplicable theoretical formalisms.

2 The non-relativistic single-particle motion
in nuclei

The purpose of this section is twofold: on one side to re-
mind the reader the general scheme of some old models for
the propagation of a particle (or hole) inside a nucleus,
that pertain to the history of nuclear physics, but that
(partially) could be scarcely useful today in practical cal-
culations; on the other side we wish to remind those top-
ics that can provide a guideline for our generalisation to
a relativistic finite nucleus and to “non-diagonal” Green’s
functions (this topic will be clarified in the next section).

If we limit ourselves to the propagation of a particle
(or hole) inside a nucleus the most natural framework to
begin with is certainly Feschbach’s approach to the opti-
cal potential [7,8]. Let us repeat once more its main topics
(or, better, the ones we need in the following). The general
idea is that, if a Hamiltonian is defined in a Hilbert space
H, then we can project the Schrödinger equation into a
subspace H′ ⊂ H, the price to be payed being an en-
ergy dependence in the effective potential. As everybody
knows, if P is a projection operator

P : H −→ H′

and Q = I−P then the Schrödinger equation in the space
H′ reads

Hopt(E)|Ψ〉

=

[

PHP + PHQ 1

E −QHQ+ iα
QHP

]

P|Ψ〉

= EP|Ψ〉 . (1)

The conceptual points we want to remark are the follow-
ing:

– the optical potential can be defined in this way and
its most relevant structures can be derived, but eq. (1)
can by no means be used to evaluate it.

– Equation (1) is quite general: according to the defini-
tion of P it can be adapted to a variety of problems:
we shall consider in the following the particle and hole
propagation in a nucleus but we shall also remind its

application to (e, e′p) reactions in impulse approxima-
tion.

– Equation (1) specifically imposes causality at each
time. We shall see that this “microscopic” causality
is the first reason that inhibits a microscopical calcu-
lation of the optical potential.

– The optical potential displays an imaginary part, but
since (1) is derived from a true Schrödinger equation
in a bigger space, the eigenvalues are necessarily real.
This applies of course to the discrete ones, i.e., to sta-
ble nuclear states. In order to conserve a Lehmann rep-
resentation with real eigenvalues, the usual way out is
that of discretizing the whole system by means of a
box normalisation.

The next requirement is the definition of P, i.e., of
the physical problem we will be concerned with. In the
archetypal case, namely the elastic scattering of protons
off nuclei P reads

P =

∫

d3r d3r′ρ(r, r′)ψ†(r)|Φ0
A〉〈Φ0

A|ψ(r′) , (2)

where |Φ0
A〉 is the ground state of a nucleus with A nu-

cleons, ψ and ψ† are the non-relativistic destruction and
creation operator of a nucleon in the point r (spin and
isospin will be neglected throughout this paper) and ρ is
fixed by the requirement P = P2, that implies symboli-
cally

ρ =
1

I − n , (3)

where
n(r, r′) = 〈Φ0

A|ψ†(r)ψ(r′)|Φ0
A〉 . (4)

The space of the solutions of the eigenvalue equa-
tion (1) is of course isomorphic to L2(R3). We can define
an orthonormal basis in L2(R3) by defining

|r) ≡
∫

d3r′ {I − n}−
1

2 (r, r′)ψ†(r′)|Φ0
A〉 . (5)

We also assume that this basis is complete. The eigenvalue
equation now reads

∫

d3r′(r|Hopt(E)|r′)ϕn(r′) = Eϕn(r) (6)

and we are in position to connect the solutions of (6) with
the true eigenstates of the A + 1 system: let |ΦnA+1〉 be a
solution of the complete Schrödinger equation in the space
of A+1 particles. Some simple algebra enable us to write
the solutions of (6) in the form

ϕn(r) =

∫

d3r′ {I − n}−
1

2 (r, r′)〈Φ0
A|ψ(r′)|ΦnA+1〉 , (7)

the eigenvalue being of course En. For future reference let
us define the function

ψn(r) = 〈ΦnA+1|ψ†(r)|Φ0
A〉 . (8)

We have shown above that up to a rescaling ψn is solution
of the eigenvalue equation for the “optical” Hamiltonian.
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It also follows that ψn is, by itself, eigenstate of the (un-
symmetric) operator

√
1− nHopt

1√
1− n

.

Very much in the same way we can handle other situa-
tions. In particular we shall be concerned with hole propa-
gation inside a nucleus. Thus we define another projection
operator, namely

P̃ =

∫

d3rd3r′ψ(r)|Φ0
A〉n−1(r, r′)〈Φ0

A|ψ†(r′) (9)

and all the above formalism follows up provided we do the
substitutions

I − n −→ n

and
ψn(r) −→ φn(r) = 〈ΦnA−1|ψ(r)|Φ0

A〉 . (10)

The next step, in the early times of the optical poten-
tial, was the connection with the single-particle Green’s
function of the system, defined, as usual, as

G(x, x′) =
〈Φ0

A|T
{

ψ(x), ψ†(x′)
}

|Φ0
A〉

〈Φ0
A|Φ0

A〉
. (11)

It was shown by Bell and Squires [9] that the self-energy
(or mass operator) can be interpreted as an optical poten-
tial (not coincident, however, with the one introduced by
Feshbach and discussed above). As is well known, G can
be separated into a retarded and an advanced part having
the following Lehmann representation:

G = G+ +G− , (12)

G+(r, r′;ω) =
∑

n

ψn(r)ψ
∗(r′)

ω − EA+1
n + iα

, (13)

G−(r, r′;ω) =
∑

n

φn(r)φ
∗(r′)

ω − EA−1
n − iα

, (14)

where the functions ψn and φn are those discussed above.
Note that the functions ψn and φn are in some way con-
nected with the shell model: in fact the index n runs over
all the possible nuclear eigenstates, but grouping together
some levels and constructing in this way the single-particle
levels and discarding those with a too small strength one
is led back to the shell model. This however implies the
breaking of the translational invariance, since the latter
would strictly imply the functional dependence

φn, ψn ∼ eip·r .

How to recover the translational invariance and at the
same time to leave sufficient room to introduce the analo-
gous of the “shell model wave functions” will be the task
pursued in the following.

The previous discussion enables us to write down (but
by no means to solve or to approximate) the inverse of
G±. We can write indeed

[

G±
]−1

(r, r′;ω) = ω − T −M±(r, r′;ω) , (15)

whereM± could be called the mass operator for particles
or holes, with the property

G+ψ∗n(r) = 0 , G−φ∗n(r) = 0 (16)

for ω = EA±1
n . The discussion above shows that ultimately

G± =
√
1− nHopt

1√
1− n

, (17)

provided the particle or hole projection operator is used
in the r.h.s. In this way we have indirectly defined the
mass operators M±; it must be reminded however that
the whole Green’s function obeys Dyson’s equation

G = G0 +G0MG , (18)

where the mass operator (or self-energy) can be derived
from a perturbative expansion, but it is not the sum of
the two mass operators defined separately for particles
and holes, and they can in no way be derived from any
perturbative scheme.

Before ending this section we would also remind that
the same formalism have been employed in studying
(e, e′p) reactions in the frame of the Distorted-Wave Im-
pulse Approximation (DWIA). There it is convenient to
define many projection operators, any of them pertain-
ing to a residual nucleus left in an excited state plus an
outgoing nucleon. This again is formally correct but by
no means one can be able to explicitly write down the
(almost) infinite set of different optical potentials. Thus
one ultimately ends up with assuming the same optical
potential for the outgoing nucleon independently of the
state the residual nucleus is left in. As a non-trivial conse-
quence the differences between longitudinal and transverse
channels are lost (see [10] to recover it). Again here the
most natural treatment of the problem goes through the
introduction of a particle-hole Green’s function having the
form (we follow the standard notations)

Πµν(x, x′) =
〈Φ0

A|T {jµ(x), jν(x′)} |Φ0
A〉

〈Φ0
A|Φ0

A〉
, (19)

where jµ is the electromagnetic current. The differences
(we could better say the incompatibility) between this
approach and the DWIA has already been shown by the
authors of this paper in ref. [6].

3 The generalised one-body Green’s function

In a relativistic approach, with the aim of pursuing the
analogy with the description of the non-relativistic single-
particle or single-hole motion discussed above, and more-
over in order to avoid the disease of multiple counting of
diagrams as outlined in [6], we consider a bound system
of fermionic and bosonic fields with finite baryonic num-
ber and in the ground state in its frame of reference but
assuming, in general, non-zero different total momenta for
incoming and outgoing states.
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Fig. 1. The kinematics for the “hole” propagation.

This approach will be applied here to nuclear physics,
but the study of the quarks dynamics in a nucleon could
also be an affordable task. Moreover in both cases the
accounting of the recoil effects is allowed.

Let us first of all introduce the incoming and outgoing
nuclear bound states |p〉 and |p′〉 for a nucleus of mass
M and initial and final 3-momenta p and p′. We can of
course introduce initial and final 4-momenta by putting

p0 =
√

p2 +M2 and p′0 =
√

p′2 +M2. The normalisation
reads

〈p′|p〉 = (2π)32p0δ
3(p− p′) . (20)

We now define a generalised single-particle Green’s
function as

Gpp′(y, y
′) =

1

2
√

p0p′0
〈p′|T

{

ψ(y), ψ(y′)
}

|p〉 . (21)

We have already observed in the previous section that in
a 2-points Green’s function the translational invariance
will rigidly constrain the analytical form of the functions
φn and ψn thus forbidding its interpretation (within some
approximation schemes) as single-particle wave functions.
The above choice of writing a generalised single-particle
Green’s function, with, actually, one more argument, re-
laxes the above constraint and will turn out to be the key
issue in constructing the relativistic generalisation of the
shell model without violating the Poincaré invariance.

The particular case we are considering deserves a com-
ment about the realization of the linked cluster theorem.
To understand it we could interpret Gpp′(y, y

′) as a limit-
ing case of a two-particle Green’s function. Imagine that
Ψ(p, t) is the destruction operator of the nucleus in its
ground state with total momentum p and |0〉 the physical
vacuum. Then Gpp′(y, y

′) can be regarded (up to normal-

ising factors) as the following limit:

lim
t→−∞

lim
t′→+∞

〈0|T
{

ψ(y), ψ(y′), Ψ †(p, t), Ψ(p′, t′)
}

|0〉
〈0|0〉

and the denominator 〈0|0〉 is the tool that ensures the can-
cellation of the disconnected diagrams in the two (com-
posite) particle Green’s function. Of course this prop-
erty is preserved through the limiting process and con-
sequently Gpp′(y, y

′) (where we neglect the denominator
〈0|0〉 throughout this paper) has always to be intended as
constructed by linked diagrams only.

Now we want to represent the function Gpp′(y, y
′) in

the Lehmann representation. First, however, we need some
kinematical considerations.

If p̂ is the 4-momentum operator, i.e., p̂ = (p̂0 =

Ĥ, p̂),
p̂α|p〉 = pα|p〉 ,

then we know that

ψ(y) = eip̂·yψe−ip̂·y (22)

(with ψ ≡ ψ(y = 0)). With these definitions we can write
the Fourier transform of Gpp′(y, y

′). Here however an am-
biguity arises, since our G is ultimately, as quoted above,
a two-particle Green’s function, we can choose in Fourier
transform two different kinematics, one tailored for the
propagation of a particle and one for a hole. For the “hole”
channel, whose kinematics is depicted in fig. 1 we define

Gh(p, p
′; q, q′) =

∫

d4y d4y′ei(p−q)y−i(,p
′−q)y′

Gpp′(y, y
′)

= (2π)4δ4(q − q′)Gh(p, p
′; q) (23)

Let us remark that all the formalism here is covariant, and
in order remind this property we indicate in Gh a depen-
dence upon the 4-vectors p, p′ and q. Strictly speaking the
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mass shell condition on p and p′ would entail a dependence
upon the 3-vector part only.

The Lehmann representation of Gh is easily written
down as

Gh(p, p
′; q) =

(2π)3

2
√

p0p′0

× 〈p′|ψ δ(p̂− q)

H − q0 − iα
ψ + ψ

δ(p̂− q′)

q′0 −H + iα
ψ|p〉 , (24)

where
q′ = p+ p′ − q , (25)

that reflects the kinematics of fig. 1. There the intermedi-
ate lines denote the sum over all the eigenstates of the sys-
tem with baryonic number A−1 (first term) or A+1 (sec-
ond term in the r.h.s. of fig. 1) having total 4-momentum
q. The former states are characterised by

H|qλ〉 = qλ0|qλ〉 . (26)

where λ is an index running over all the A−1 states, their
mass being Mλ, with the relations

qλ = (qλ0,q) , qλ0(q) = ±
√

M2
λ + q2, (27)

the normalisation being

〈qλ′ |qλ〉 = (2π)3
qλ0

Mλ

δλλ′δ(q− q′) . (28)

The states with A+1 particles are denoted with the index
ν which is understood to run over all the A + 1 excited
states. For them eqs. (26) to (28) also hold up to the re-
placement λ→ ν.

Here, in order to be completely covariant we have al-
lowed the intermediate states to contain negative energy
solutions, too. This case will be practically irrelevant in
nuclear physics, but not at all negligible if we want to
extend this formalism to QCD.

Note also that, just to make a choice, we have assumed
for a state with baryon number A a boson normalisation
(A is assumed to be even). Thus consequently an A − 1
state must be normalised as a fermion.

In order to make the Lehmann representation for Gh

more explicit, we introduce in eq. (24) the complete set
∑

λ |qλ〉〈qλ| (for the A − 1 system) in the first term of
its r.h.s. and

∑

ν |qν〉〈qν | in the second one. We easily
find [11,12]

Gh(p, p
′; q) =

∑

λ

ϕλ(p,q)ϕλ(p
′,q)

qλ0(q)− q0 − iα

+
∑

ν

ψν(p
′,q′)ψν(p,q

′)

p0 + p′0 − q0 − qν0(q′) + iα
,

(29)

where the ϕ and ψ are defined as

ϕλ(p,q) =

√

Mλ

2p0qλ0
〈qλ|ψ|p〉 , (30)

ψν(p,q)) =

√

Mν

2p0qν0
〈p|ψ|qν〉 . (31)

The equal time commutation relations imply

∫

d3y

2
√

p0p′0
〈p′|

{

ψ†, ψ(y)
}

|p〉e−i(p−q)·y =

〈p′|p〉
∫

d3y

2
√

p0p′0
δ(y) = (2π)3δ(p− p′) . (32)

Inserting now a complete set of intermediate states
∑

λ,ν |qλ,ν〉〈qλ,ν | in the two terms of the anticommuta-

tor in the l.h.s. and using (22) we get the a completeness
equation in the form

∑

λ

ϕλ(p,q)ϕ
†
λ(p

′,q) +
∑

ν

ψν(p
′,q′)ψ†ν(p,q

′)

= (2π)3δ(p− p′) . (33)

We observe that now the functions ϕλ and ψλ play the
same role of φn and ψn in the eqs. (13) and (14) of sect. 2,
but now the formalism is Poincaré invariant and further,
even if we are only considering the nucleonic Green’s func-
tion, all the information about the dynamics of the system
is already embedded in ϕλ and ψλ.

In the same line as above, we can also introduce a
“particle” kinematics: in analogy with Gh we introduce

Gp(p, p
′; q, q1) =

∫

d4y d4y′Gpp′(y, y
′)ei(q−p

′)y−i(q1−p)y
′

= (2π)4δ4(q − q1)Gp(p, p
′; q) (34)

whose graphical representation is given in fig. 2.
By comparison with eq. (23) one immediately estab-

lishes the link

Gp(p, p
′; q) = Gh(p, p

′; q′) , q′ = p+ p′ − q . (35)

For the sake of simplicity we consider a specific model
of a fermionic field interacting with the scalar bosonic field
σ(y), neglecting the self-interactions ∼ σ3 and σ4. In this
simplified scheme (that nevertheless still contains all the
difficulties relevant to the fermionic sector) the Hamilto-
nian of the system reads

H =

∫

d3yψy (−iγ∇y +m+ gσy)ψy +H0
σ , (36)

H0
σ being the free Hamiltonian of the σ meson. Using the

equation of motion for the field operator ψ

γ0 [ψ,H] = γ [ψ, p̂] + (m+ σ)ψ , (37)

we can derive the evolution equation for G, namely

(iγ · ∂y −m)Gpp′(y, y
′) = (2π)3δ(p− p′)δ4(y − y′)

− i g

2
√

p0p′0
〈p′|T

{

σ(y)ψ(y)ψ(y′)
}

|p〉 . (38)

We can first of all prove that, on general grounds,
Gpp′(y, y

′) can be inverted and consequently a mass oper-
ator can be defined by means of a perturbation expansion.
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Fig. 2. The kinematics for the “particle” propagation.

The standard proof requires to introduce the generating
functional for connected diagrams and then to perform a
Légendre transformation on it, and since it can be found
in the usual textbooks [13], it is not reported here. We
only remark that the generalisation of the Green’s func-
tion definition used in the present paper will only affect
the boundary conditions of the path integral representa-
tion of the generating functional, but not the steps needed
to define the mass operator.

We rewrite eq. (23) in the form of a Dyson-like equa-
tion in the Fourier transform as

{γ · (p− q)−m}Gh(p, p
′; q) = (2π)3δ(p− p′)

+

∫

d3p1

(2π)3
[Mh(p, p1; q)Gh(p1, p

′; q)

+Mp(p1, p
′; q′)Gp(p, p1; q

′)] , (39)

the mass operators Mh and Mp being defined according
to the “hole” and “particle” channels through

∫

d3p1

(2π)3
Mh(p, p1; q)Gh(p1, p

′; q) =

(2π)3

2
√

p0p′0
〈p′|ϕ̄ δ(p̂− q)

H − q0 − iα
σϕ|p〉 , (40)

∫

d3p1

(2π)3
Mp(p1, p

′; q′)Gp(p, p1; q
′) =

(2π)3

2
√

p0p′0
〈p′|ϕσ δ(p̂− q′)

q0 −H + iα
ϕ̄|p〉 . (41)

In the above p and p′, as well as p1, are restricted to
the mass shell and σ is defined as

σ = σ(y)
∣

∣

y=0
⇒ σ(y) = eip̂yσe−ip̂y . (42)

Further, the index h in Mh only remind the “hole” kine-
matics chosen in introducing the Fourier transform. In the
configuration space the mass operator is univocally deter-
mined by the Green’s function and embodies both particle
and hole propagation.

Concerning the structure of the mass operator, the
general theory tells us that it is built by the sum of all
1PI (one-particle irreducible) diagrams defined in sect. 5
as shown in fig. 3, and must have the analytical structure

Mh(p, p
′, q) = Sh(p, p

′, q) +
∑

∫

Γhn(p, q)Γh
∗
n(p

′, q)

qhn(q)− q0 − iα
. (43)

Here the first term is a smooth (regular) function of q0
while the second term carries poles in qh, living of course
in the region q2 > M2

A−1. Equation (39) also shows that
a pole of Mh corresponds to a 0 of Gh and vice versa.

The “particle” mass operator has an analogous expan-
sion but its poles lie in the region q2 > M2

A+1.
The knowledge of the Green’s function (or of the mass

operator) gives us access to many observables, like, for
instance, the number of baryons

A = Tr

∫

d4q

(2π)4i
γ0Gh(p, p; q)e

−iq0α (44)

and the ground-state energy

p0 =
〈p|H|p〉
〈p|p〉

= −iTr
∫

d4q

(2π)4

{

[γ · (p− q) +m]Gh(p, p; q)

+

∫

d3p′

(2π)3
Mh(p, p

′; q)Gh(p
′, p; q)

}

+
〈p|Hσ

0 |p〉
〈p|p〉 .

(45)
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Fig. 3. The diagrammatic representation of Dyson’s mass operator.

Now we can introduce the analogous of the
“single-particle wave functions” in our relativistic ap-
proach, generalising what was described by eqs. (7), (8).
This is done by taking eq. (39) and integrating it over q0
in a small circle containing a pole qλ0 (within box normal-
isation if needed) and remembering that the poles of the
Green’s function and of the mass operator never coincide.
In doing so we immediately find

{γ(p− qλ)−m}ϕλ(p,q)

=

∫

d3p′

2(2π)3
√

p0p′0
Mh(p, p

′; qλ)ϕλ(p
′,q)

=

√

Mλ

2p0qλ0
〈qλ|σψ|p〉 , (46)

{γ(qν − p)−m}ϕν(p,q)

=

∫

d3p′

2(2π)3
√

p0p′0
Mp(p

′, p; qλ)ϕλ(p
′,q)

=

√

Mν

2p0qν0
〈p|σψ|qν〉 . (47)

The above quantities ϕ are not, of course, wave func-
tions, because they feel the presence in the system of an-
tiparticles as well as of mesons, but can be looked at as
eigenfunction of the system. The case of the uniformly
invariant system (free Fermi gas or maybe quark-gluon
plasma) may enable us to make strongly simplifying as-
sumptions. For finite systems we however can still exploit
the idea of a mean-field calculation.

4 The relativistic shell model

The last equations of the previous section contain the
ground idea to build the relativistic analogue of the shell
model.

We first consider the “hole” channel and rewrite
eq. (46) in the form [14]

{γ(p− q`(q))−m}ϕ`(p, q) =
∫

d3p′

(2π)3
Mh(p, p

′; q)ϕ`(p
′, q) (48)

with the subtle difference that now q0 is considered a free
parameter. If follows that (48) considered at a given q0
can be regarded as an eigenvalue equation, the eigenvalue
being q`0(q) that is in general different from the q0 fixed
and contained in Mh. Here notations matter: in fact ϕ`
depends upon the 4-vector q, chosen by the exterior. We
have left the dependence upon p instead of p to remind
the reader that ϕ` is a 4-spinor depending, furthermore,
upon Lorentz-covariant quantities like q2 and p · q, being
understood, however, that p0 is fixed by the mass shell
condition.

Having distinguished between q0 and the eigenvalue
q`0(q), (48) will have a complete orthogonal set of eigen-
function, i.e., the ϕ` must obey the properties

∫

d3p

(2π)3
ϕ∗`′(p, q)ϕ`(p, q) = δ`′`c`(q) , (49)

∑

`

1

c`(q)
ϕ`(p, q)ϕ

∗
` (p

′, q) = (2π)3δ(p− p′) , (50)

c`(q) being a suitable normalisation factor.

Equation (48) at a fixed and suitably chosen q0 looks
like a shell model equation having a (non-local) “shell
model potential” Mh; the functions ϕ`(p, q) are not con-
nected with any observable quantities, but they are ex-
pected, for a reasonable approximation of Mh and in
a convenient range of q0 (it means some average of the
single-particle levels of a shell model well) to approach
the “single-hole” wave functions ϕ`(p, q) previously intro-
duced. This is of course likely below the Fermi level.

For the particle channel we rewrite eq. (47) as

{γ(Q`(q)− p)−m}χ`(p, q) =
∫

d3p′

2(2π)3
√

p0p′0
Mp(p

′, p; qλ)χ`(p
′, q) , (51)

normalisation and completeness relations being fully anal-
ogous the “hole wave function” case.
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According to the general form (29) we can now intro-
duce the shell-model–like Green’s function as

Gs.m.
h (p, p′; q) =

∑

`

N`

c`(q)

ϕ`(p, q)ϕ`(p
′, q)

q`0(q)− q0 − iα

+
∑

`

(1−N`)

d`(q′)

χ`(p
′, q′)χ̄`(p, q

′)

q′0 −Q`0(q′) + iα

∣

∣

∣

∣

∣

q′=p+p′−q

,

(52)

where c` and d` are suitable normalisation factors and

N` = θ(`F − `) , (53)

with
∑

`

N` = A . (54)

Of course the labels `’s are ordered increasingly with the
corresponding energy and `F denotes the highest occupied
level (Fermi level).

The equation the function Gs.m.
h (p, p′; q) fulfils is simi-

lar to (39), provided the δ-function in the r.h.s. is replaced
by

∑

`

γ0

{

N`

c`(q)
ϕ`(p, q)ϕ`(p

′, q) +
1−N`

d`(q′)
χ`(p

′, q′)χ̄`(p, q
′)

}

.

The above is of course expected to approximate a δ as far
as the “shell model” approximation holds valid.

In the above formalism clearly the poles of Gh must
also be poles of Gs.m.

h (the converse is not true in gen-
eral because some poles of Gh are killed by the projection
operator 1−N`).

We assume that the equations

q`0(qλ`) = qλ`0(q) , (55)

Q`0(qν`) = qν`0(q) (56)

have one or more (maybe infinite) roots for a given
“single-particle” quantum number `. The qλ`0(q) are the
eigenvalues of the equation for the A− 1 particle state

H|qλ`,ν`〉 = qλ`ν`0|qλ`,ν`〉 . (57)

The residua of Gh and of Gs.m.
h below the Fermi level co-

incide and from eqs. (24) and (52) we obtain

ϕλ`(p,q)ϕλ`(p
′,q) =

N`

c`(q)

{

1− ∂q`0(q)

∂q0

}−1

ϕ`(p, q)ϕ`(p
′, q)

∣

∣

∣

∣

∣

q0=qλ0(q)

. (58)

Thus, the above suggests to attribute to the ϕλ` the
meaning of a generalisation at the relativistic level of a
single-particle wave function in a shell model, fully main-
taining, nevertheless, Lorentz and Poincaré invariance. We
repeat once more that this occurs because we are con-
sidering a “non-diagonal” single-particle Green’s function
where the recoil of the daughter nucleus is accounted for.

Now we make a physical assumption that further nar-
rows us to the shell model: we assume that a one-particle
level ` is composed by the same sub-levels λ` of the exact
many-body problem in such a way that

∑

λ`

∫

d3q

(2π)3
|ϕλ`(p,q)|

2
(59)

=
∑

λ`

∫

d3q

(2π)3
N`

c`(q)

×
{

1− ∂q`0(q)

∂q0

}−1

|ϕ`(p, q)|2
∣

∣

∣

∣

∣

q0=qλ`0(q)

= N`
′ .

This property is not peculiar of a relativistic system, since
the same will happen in the non-relativistic case.

Now we are ready to make the last step and introduce a
phenomenological “shell model” potential V (p, p′; q̃), with
p and p′ restricted to the nucleus mass shell and the
4-vector q̃ chosen as

q̃ = (q̃0,q) , q̃0 =
√

q2 +M2
A−1 , (60)

where MA−1 is the mass of the daughter nucleus in its
ground state (this choice maintains the analogy with the
non-relativistic case: see, e.g., [14])

Thus the potential V is independent of q0 and we as-
sume it to be symmetric, i.e., V (p, p′;q) = V (p′, p;q).
From now on we must guess V (p, p′;q) on phenomenolog-
ical grounds in such a way that

{γ(p−q`(q))−m}ϕ`(p,q)−
∫

d3p′

(2π)3
V (p, p′;q)ϕ`(p

′,q)

=

∫

d3p′

(2π)3
[Mh(p, p

′; q)− V (p, p′;q)]ϕ`(p
′, q) (61)

will be reasonably small.
Once a parameterisation for V has been given we can

write down the eigenvalue equation for the“hole wave
functions”

{γ · (p− q`(q))−m}ϕ`(p,q) =
∫

d3p′

(2π)3
V (p, p′;q)ϕ`(p

′,q) , (62)

being

q` = (q`0(q),q) , p = (p0(p),p) , p′ = (p′0(p
′),p′) .

(63)
The index ` (of course discrete) summarises now all the
quantum numbers pertaining to a given “one-hole” state
in the “shell model potential” V .

As an aside, in analogy with the “hole” channel, we
can introduce an equation for the “particle” channel as

{γ · (Q`(q)− p)−m}χ`(p,q) =
∫

d3p′

(2π)3
V (p, p′;q)χ`(p

′,q) . (64)
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Up to now covariance has been preserved. The next
step is to find a practical way to solve the “shell model
equation” (62). Since it is not so easy to give an explicit
solution of it in a covariant form, we are forced, in the
following, to choose a suitable reference frame where the
equation is particularly simple. Once the solution has been
found, however, we need a procedure to boost it to any
reference frame. This will be our next task.

Thus, coming to the “hole” channel, there are two nat-
ural choices for the reference frame. One is to assume it
as the rest frame for the A − 1 system, i.e., q = 0: the
eigenvalue equation there becomes

{γ · k` −m}ϕ(k, 0) =
∫

d3k′

(2π)3
V (k, k′)ϕ(k′, 0) , (65)

where

k` = (p0(k)− q`0,k), k = (p0(k),k), k′ = (p0(k
′),k′).
(66)

Another customary choice is to assume p = 0 (rest frame
for the A-nucleons system). Of course any reference frame
can be reached by means of a boost. Thus, let |0〉 be the
p = 0 frame and let Λ be the boost from |0〉 to the state
|k〉 corresponding to q = 0:

|k〉 = Λ|0〉 .

Let us specify in more detail the state of the daughter
nucleus: we expand the previous index ` as

` ≡ (λ, J,M, π) ,

where J is the total angular momentum, M its third
component and π the parity. λ will then resume all the
other intrinsic (not frame-dependent) quantum numbers.
We can now write

ϕλ,J,M,π(k, 0) =
1

√

2p0(k)
〈0;λ, J,M, π|ψ(0)Λ|0〉

=
1

√

2p0(k)
〈0;λ, J,M, π|ΛΛ−1ψ(0)Λ|0〉

=
1

√

2p0(k)
S(−v)〈−ηλk;λ, J,M, π|ψ(0)|0〉,

(67)

where as usual S is defined through the relation

S(−v)ψ(0) = Λ−1ψ(0))Λ (68)

and reads

S(−v) =

√

p0(k) +M

2M

(

1− γ0γ · k
p0(k) +M

)

. (69)

Of course

v =
k

p0(k)
(70)

denotes the velocity of the boost from the rest frame of
the daughter nucleus and an extra factor accounting for

the mass difference between the A and A − 1 systems is
required, namely

ηλ =
MA−1

λ,J,π

M
. (71)

The above entails

Λ−1|0;λ, J,M, π〉 = | − ηλk;λ, J,M, π〉 . (72)

In the p = 0 frame the 4-vector q transforms into

q′0
MA−1

λ,J,π√
1− v2

=
MA−1

λ,J,π

M
p0(k) =

√

(MA−1
λ,J,π)

2 + η2
λk

2, (73)

q′ = −
vMA−1

λ,J,π√
1− v2

= −ηλk (74)

and the “eigenfunction” ϕ reads

ϕλ,J,M,π(0,k) (75)

=

√

MA−1
λ,J,π

2MqλJMπ;0(k)
〈k;λ, J,M, π|ψ(0)|0〉

= S(−vλ)ϕλ,J,M,π(−k/ηλ, 0)

with

vλ =
k

qλJMπ;0(k)
. (76)

This definitions implies

∫

d3k

(2π)3
ϕλ,J,M,π(0,−k)ϕλ,J,M,π(0,k)

= η2
λ

∫

d3k

(2π)3
ϕλ,J,M,π(k, 0)ϕλ,J,M,π(k, 0) . (77)

The formalism above has shown that we can solve
the “shell model” equation (62) in the rest frame for the
A − 1 daughter nucleus and then, using the above kine-
matics, transfer the solutions to the usual rest frame of
the A-nucleus, namely p = 0. Having established good
transformation properties of the solutions, we now need
to find them in the preferred reference system. Before do-
ing explicit (model) calculations let us investigate a little
what lies beyond the shell model.

5 The perturbative expansion

The shell model in nuclear physics is usually thought as
the 0th order (mean field) of a perturbation expansion.
Using the eigenfunctions derived from eqs. (62) and (64)
we can represent the “unperturbed” Green’s function in
the “hole” kinematic, in analogy with (52), as

G0
h(p, p

′; q) =
∑

`

N`

c`(q)

ϕ`(p,q)ϕ`(p
′,q)

q`0(q)− q0 − iα

+
∑

`

1−N`

d`(q′)

χ`(p
′,q′)χ̄`(p,q

′)

q′0 −Q`0(q′) + iα

∣

∣

∣

∣

∣

q′=p+p′−q

.

(78)
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p p’

Gh
0(p,p’;k)

p-k p’-k

p-q p’-q

Fig. 4. Diagrammatic description of the Hartree contribution
to the mass operator.

Also, we can introduce a “shell model particle Green’s
function” by applying relation (34) to eq. (78), namely

G0
p(p, p

′; q) = G0
h(p, p

′; p+ p′ − q) . (79)

The first order in the expansion of the mass operator
M in terms of the meson interaction coincides with the
Hartree-Fock approximation: the first contribution reads

(Mh)Hartree = −iTrg2

∫

d4k

(2π)4
Gh

0(p, p′, k)D0(p− p′)

= Tr
∑

l

g2

∫

d3k

(2π)3
ϕ`(p

′,q)ϕ`(p,q)D0(p− p′) , (80)

where, of course,

D0(k) =
1

k2 −m2
σ + iα

(81)

is the free σ propagator, and is displayed in fig. 4, while the
second term represents, as one can easily convince himself,
the Fock contribution, namely

(Mh)Fock = iTrg2

∫

d4k

(2π)4
Gh

0(p, p′, k)D0(k − q) , (82)

and is represented in fig. 5, The other terms have compli-
cated and in practice non-manageable expressions that in-
volve the detailed structure (i.e., the excited states) of the
target nucleus. We only show diagrammatically a second-
order contribution in fig. 6.

6 A simple model

The above theory looks rather formal. Thus, let us show
how it can be implemented in a practical case. In order
to have manageable formulas we consider a “shell model
potential” of the separable form

V (k,k′) = −(2π)3
∑

Jlj

YJlj(k)Y
†
Jlj(k

′)vJ(|k|)vJ (|k′|) ,

(83)

p p’

Gh
0(p,p’;k)

p-k p’-k

p-q p’-q

Fig. 5. Diagrammatic description of the Fock contribution to
the mass operator.

where, as usual,

YJlj(k) =
∑

s

〈

l, j − s; 1
2
, s

∣

∣

∣

∣

l,
1

2
; J, j

〉

Ylj−s(k)χs

are the generalised spherical harmonics and vJ is some
function to be chosen in such a way to reproduce the nu-
clear phenomenology. Actually we put

vJ(|k|) =
(

c

m2 + k2

1

b+ eka(A,J)

)
1

2

, (84)

where b an c are constant and a(A, J) will depend upon
the atomic number A and, a priori, upon the total angular
momentum J .

Now we can solve eq. (65) (we assume that, as es-
tablished in sect. 4, once the eigenfunctions ϕn have
been found in the frame of reference q = 0, then the
above-described transformations can provide their expres-
sion in any other frame).

The spinor (not strictly speaking a wave function) so-
lution of (65) will be labelled by J and ω and has the
form

ϕJ,ω =

(

YJlj(k̂)FJ,ω(k)

YJl′j(k̂)GJ,ω(k)

)

, (85)

where
l = J +

ω

2
, l′ = J − ω

2

and

ω =

{

+1 for states with parity (−1)J+ 1

2 ,

−1 for states with parity (−1)J− 1

2 .
(86)

Using the well-known relation (independent of the par-
ity)

σ · kYJlj(k̂) = −kYJl′j(k̂) (87)

we find

(k · γ −m)ϕJ,ω =
(

[(k0 −m)FJ,ω(k) + kGJ,ω(k)]YJlj(k̂)

− [kFJ,ω(k) + (k0 +m)GJ,ω(k)]YJl′j(k̂)

)

(88)
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p p’p’’ p’’’
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0(p,p’’;k)

Gp
0(p’’,p’’’;p+p’’-k’)

G0(p’’’,p’;p’+p’’-k’)

Fig. 6. A typical example of higher-order diagram in a perturbative calculation.

and now not only eq. (65) is separable thanks to the choice
of the potential but the large and small components of the
spinors are decoupled and one gets

(k0 −m)FJ,ω(k) + kGJ,ω(k) = −vJ(k)XJ [FJ,ω],

(89a)

−kFJ,ω(k)− (k0 +m)GJ,ω(k) = −vJ(k)XJ [GJ,ω],

(89b)

where the functional XJ is defined as

XJ [f ] =

∞
∫

0

p2dp vJ(p)f(p) . (90)

Then inverting the above and recalling (66), i.e., explicit-
ing the expression of the eigenvalue k0 = p0(k) − q`0, we
get the system

FJ,ω(k) = (91a)

− (p0(k)− q`0 +m)XJ [FJ,ω] + kXJ [GJ,ω]

(p0(k)− q`0)2 − k2 −m2
vJ(k) ,

GJ,ω(k) = (91b)

kXJ [FJ,ω] + (p0(k)− q`0 −m)XJ [GJ,ω]

(p0(k)− q`0)2 − k2 −m2
vJ(k) .

Inserting then these expressions into the definition of the
functionals XJ [FJ,ω] and XJ [GJ,ω] we get for them a ho-
mogeneous system, namely

XJ [FJ,ω] = B−J (q`0)XJ [FJ,ω]− CJ(q`0)XJ [GJ,ω] ,

(92a)

XJ [GJ,ω] = CJ(q`0)XJ [FJ,ω]−B+
J (q`0)XJ [GJ,ω],

(92b)

where we have defined

B±J (q`0) =

∞
∫

0

k2dk
[q`0 − p0(k)±m] v2

J(k)

(p0(k)− q`0)2 − k2 −m2
, (93)

CJ(q`0) =

∞
∫

0

k3dk
v2
J(k)

(p0(k)− q`0)2 − k2 −m2
. (94)

The eigenvalue equation generated from the system (92)
is then

RJ(q`0) = [CJ (q`0)]
2 − (B−J (q`0)− 1)(B+

J (q`0) + 1) = 0 .
(95)

Note that the functions B±J and CJ are real only in the
range q`0 > MA +m or q`0 < MA −m, (the former case
referring to an A-nucleus system plus an antinucleon and
the latter to an A-nucleus plus a hole). Here of course
MA = p0(0) denotes the rest mass of the A-nucleus.

Once the equation is solved in q`0 we also get, up to
a normalisation constant, the explicit expressions for the
“wave functions”

FJ,ω(k) = (96a)

−p0(k)− (q`0 +m)CJ (q`0)− k(1−B−J (q`0))
(p0(k)− q`0)2 − k2 −m2

v2
J(k) ,

GJ,ω(k) = (96b)

−(p0(k)− q`0 −m)(1−B−J (q`0)) + kCJ (q`0)

(p0(k)− q`0)2 − k2 −m2
v2
J(k) .

Note that, from (95), the energy levels are degenerate with
respect to j and to the parity and in the notations we can
rewrite q`0 as qJ0.

If we further introduce the notation

ε =MA − qJ0 −m (97)



210 The European Physical Journal A

Table 1. Energy levels of the relativistic “shell model” for
different A and J .

A J = 1/2 J = 3/2 J = 5/2 J = 7/2 J = 9/2

12 −9.5 −8
24 −10.5 −9 −8
40 −12.5 −10.5 −9 −8
60 −15 −13 −11.5 −10 −8

then the functions B± and C become

B+(ε) =−
∞
∫

0

k2dk
∆p+ ε

(∆p+ ε)(∆p+ ε+ 2m)− k2
v2
J(k),

(98)

B−(ε) =−
∞
∫

0

k2dk
∆p+ ε+ 2m

(∆p+ ε)(∆p+ ε+ 2m)− k2
v2
J(k)

(99)

and

C(ε)) =

∞
∫

0

k2dk
1

(∆p+ ε)(∆p+ ε+ 2m)− k2
v2
J(k),

(100)

where we put
∆p = p0(k)−MA (101)

to better control the orders of magnitude: this last quan-
tity is in fact expected to be small (say, of the order of
k2/2MA) unless we look at extreme situations, and for
bound states ε is of the order of few MeV.

To exemplify how the above works, we have chosen the
parameters in (84) as

a(A, J) =
1

m

[

0.7314 + 0.3274A
1

3 (102a)

−0.0884 2

3 + 0.0089A− 0.005(2J − 1)
]

,

b = 0.09, (102b)

c = 0.1 (102c)

and we have evaluated the hole energy for different values
of A and J . The results (in MeV) are reported in table 1.
For the sake of simplicity we have assumed

MA = A(m+ µ) (103)

and the chemical potential µ is chosen as usual as µ =
−8 MeV.

The above example shows how our formalism works.
To our knowledge the approach presented in this pa-
per is beyond the usual relativistic shell calculations,
since the usual ways to afford relativity (see our ref. [3]
and the many references quoted therein) mainly con-
cern QHD (Quantum-Hadro-Dynamics) inspired models
with a space-dependent mass term that explicitly breaks
Poincaré invariance. This flaw is obviously not obnoxious
when heavy nuclei are concerned, it has no future, how-
ever, when handling a nucleon as a 3-quark system.

7 Conclusion and outlook

In the present paper we have shown how a relativistic
theory of the nucleus can be constructed still preserving
the main features of the shell model. In our approach in
fact a shell-model–like equation has been constructed, ad-
mittedly in a well-defined reference frame, but we have
also built up all the formalism needed to boost the re-
sults to any other frame of reference, thus reconstructing
Lorentz and Poincaré invariance: this is a by far non-trivial
achievement, since in the traditional nuclear physics trans-
lational invariance is broken from the very beginning by
the shell model even in a non-relativistic scheme. Of course
the above is particularly suitable for small systems, since
recoil and center-of-mass motion is fully accounted for.
This goes clearly beyond the approaches based on trans-
lationally invariant systems [2,5].

Of course some approximations can be needed in prac-
tical calculations, and mainly we introduce a “shell model
potential” which is thought to approximate the mass op-
erator. Again, exactly as described in sect. 2 we can use
the same potential to describe particle and hole dynamics,
but still the same disease survives, since in principle the
mass operators in the “hole” and “particle” kinematics
are intrinsically different. Thus, we can use the same po-
tential as a starting point, but then different perturbative
expansions are required, as shown in sect. 5.

The key issue of the paper is the definition of the “shell
model wave function”: we systematically use quotation
marks in referring this quantity because it is not at all a
wave function, but is defined, instead, as the expectation
value between physical states (containing any kind of
particles, namely nucleons, mesons and antinucleons) of
some field operators. Thus these quantities, referred to in
the above as ϕ and χ, maintain the formal analogy with
the true nuclear wave functions of the non-relativistic
shell model, but contain a much more involved dynamics,
since as many mesons and antinucleons as possible are
allowed to appear, and hence accounted for, inside ϕ and
χ, the only constraint being a variation of the baryonic
number of ∓1.

Thus, we can apply the formalism developed so far
to any relativistic system, not necessarily to nuclei, but
also (as obvious) to nucleons, where the “shell model
wave function” (still with quotation marks!) can be re-
garded as the analogous of the quark wave functions in
the constituent-quark model, not disregarding, however,
the parton content of the constituent quark, which is a
composite object built up on current quarks, antiquarks
and gluons.

Our formalism can also be regarded as a theoretical
ground for the constituent-quark model and at the same
time shows its limitations: in fact, as shown above, we
can derive from the ϕ and χ the static properties of the
nucleus or of the nucleon, but the response functions (in
the nuclear case) or the γ or lepton interaction with a
nucleon require a more detailed study, since the degrees
of freedom embodied in the “shell model wave function”
require to be explicitly dealt with. We plan in a successive
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work to explore the dynamical properties of a relativistic
complex but finite system.
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